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Abstract: This paper proposes a novel hierarchical model predictive control (MPC) strategy
that guarantees overall system stability. Our method differs significantly from previous ap-
proaches to guaranteeing overall stability, which have relied upon a multi-rate framework where
the inner loop (low level) is updated at a faster rate than the outer loop (high level), and the
inner loop must reach a steady-state within each outer loop time step. In contrast, our approach
is aimed at stabilizing the origin of an error system characterized by the difference between the
inner loop state and the state specified by a full-order reference model. This makes our method
applicable to systems that do not possess the level of time scale separation that is required to
apply the multi-rate framework successfully. Stability constraints for the proposed algorithm are
derived, and the effectiveness of the proposed reference model-based strategy is shown through
simulation on a stirred tank reactor problem, where we demonstrate that the MPC optimization
problem remains feasible and the system remains stable and continues to perform well when

time scale separation between the inner and outer loops is reduced.

Keywords: Control of constrained systems, Decentralized control, Optimal control theory.

1. INTRODUCTION

This paper focuses on a two-layer inner loop/outer loop
hierarchical control structure depicted in Fig. 1, where the
ultimate objective is to track a setpoint, r. The actuator
and plant represent a cascade wherein a virtual control,
v, characterizes an overall force, moment, or generalized
effect produced by the actuators at the inner loop, and
this virtual control input acts as the single driver to the
plant. In the hierarchical control strategy, an outer loop
controller sets a desired wvirtual control input, v4es, and it
is the responsibility of the inner loop to generate control
inputs u that drive v close to vges.

X

¥ |OuterLoop | Yz | InnerLoop | U Actuator | Vv Plant X
Control Control Dynamics

] Dynamics T
[

Fig. 1. Basic hierarchical control strategy.

This control approach is employed in a number of auto-
motive, aerospace, and marine applications, such as [Luo
(2004)], [Luo (2005)], [Luo (2007)], [Tjonnas (2007)], and
[Vermillion (2007)]. The use of MPC for this hierarchical
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structure has been popularized recently in the works of
[Falcone (2008)], [Scattolini (2007)], [Scattolini (2008)],
[Scattolini (2009)], and [Picasso (2010)]. Several of these
papers have considered the stability problem for hierar-
chical control for certain classes of systems. In [Scattolini
(2007)], [Picasso (2010)], and [Picasso (2010)], a multi-
rate hierarchical MPC scheme is proposed, with stability
constraints, in which the inner loop is updated at a faster
rate than the outer loop, allowing the inner loop several
time instances to force v to wges. Specifically, at each
outer loop time instant, the steady state corresponding
to v = vqes 1S calculated, and the inner loop MPC places a
constraint on the optimization that requires the inner loop
to reach this steady state within a single outer loop time
instant (in addition to several other constraints that make
the method work). The strategy proposed in [Scattolini
(2007)], [Picasso (2010)], and [Picasso (2010)], represents
a very effective way of guaranteeing stability when there
is a large time scale separation between the inner and
outer loops. However, because the inner loop must reach
a steady state within a single outer loop step, the method
is impractical for systems without sufficient time scale
separation.

The approach proposed in this paper differs from that of
[Scattolini (2007)], [Scattolini (2008)], and [Picasso (2010)]
in that it attempts to drive the inner loop states to those
of a reference model rather than to the steady state values
corresponding to wvges. This reference model is designed



to represent the desired inner loop dynamics, and the
state of the inner loop is guaranteed through our approach
to asymptotically track the state of the reference model.
Our stability formulation relies on terminal constraint
sets for the outer and inner loop, in addition to rate-
like constraints that ensure that the optimized MPC
trajectories do not vary too much from one instant to
the next. We show through the same stirred tank reactor
example as was used in [Picasso (2010)] that our algorithm
provides for a stable interconnected system under a variety
of actuator dynamics, including those that are significantly
slower than the ones explored in [Picasso (2010)].

The paper is organized as follows. Section 2 provides the
formal problem statement, along with notation that will be
used throughout the paper, and Section 3 specifies the de-
tails of the control design and summarizes the MPC design
parameters in a compact table. Sections 4 and 5 present
the theoretical framework behind the construction of the
invariant sets and rate-like constraints that are used in our
stability formulation. Section 6 presents results relating to
successive feasibility, convergence to terminal sets, and,
most importantly, overall system stability. Finally, section
7 presents a stirred tank reactor problem that illustrates
the effectiveness of our proposed algorithm.

2. PROBLEM STATEMENT

In this paper, we consider two interconnected systems,
whose dynamics in discrete time are given by:

X1 (k + 1) = All‘l(ki) + Bﬂ}(k‘),
wa(k + 1) = Aszo(k) + Bau(k), (1)
v(k) = Cz(k),

where v € R? represents the virtual control input, z; €
R™ represents the plant states, which are driven by the
virtual control input, v, whereas x5 € R™2 represents the
actuator states, which are driven by the real control inputs,
u € RP where p > ¢. We assume that the pair (As, Bs)
is controllable from each control input, and, without
further loss of generality, that the actuator dynamics of
(1) are written in block controllable canonical form (CCF)
[Luenberger (1967)].

In this paper, we are interested in stability of the over-
all system (both inner and outer loops) under constant
setpoints, r. Assuming that there exist control inputs
that achieve x;; = r, we can, without loss of generality,
perform a coordinate translation and consider the problem
of asymptotic stability with » = 0:

Definition 1. (Asymptotic Stability) The origin, = 0, is
asymptotically stable if for every € > 0, there exists §; > 0
such that:

[2(0)[|2 < 61 = [lz(k)[l2 < €, Vk = 0, (2)

and there exists d, > 0 such that:
|2(0)]]2 < 02 = limg—oox(k) = 0. (3)
O

Furthermore, the region of attraction, is defined as follows:
Definition 2. (Region of Attraction) The region of attrac-
tion of x = 0 is the largest set, R C R", such that if
2(0) € R, then limy_,oo x(k) = 0. O

3. CONTROL DESIGN FORMULATION

In contrast to other approaches that aim to force v to
track vges exactly, our approach relies on the design of
an inner loop reference model, which describes the ideal
input-output behavior from vges to v. This reference model
is given by:

xf(k—i—1):Afxf(k)—|—vades(k), (4)
vl (k) = Cay(k),

where the block diagram description of the overall system
under this reference model approach is given in Fig. 2.
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Fig. 2. Hierarchical control strategy under the reference
model based approach. This block diagram also con-
forms to the system structure when the terminal con-
troller is in place in our proposed MPC strategy.

=!

We assume that:

e The reference model is stable, i.e., re(A;(Af)) < 0, Vi
(we use A to distinguish elgenvalues from contraction
rates, which are also traditionally denoted by \);

e The reference model does not share any zeros with
unstable poles of A; (a mild assumption since the
designer has full control over the reference model).

In order to generate an error system between the actuator
and reference model states (i.e., 2 — ), we require the
reference model to be written in block CCF, just as in
(1). It follows from this form that the pair (Ay, By) is
controllable and the reference model can be matched.

The error system between the reference model and actua-
tor states is described by:

F(k+1) = AyE(k) + (Ay — Ap)z (k) + Bou(k)
7Bf’l}des(k), (5)
(k) = C#(k),

where Z(k) = x9(k) — x¢(k). For notational convenience
throughout the paper, because the reference model is em-

bedded in the outer loop, we will introduce the augmented

T . .
outer loop state, z{" = [:UIT x?] , which results in

augmented outer loop dynamics given by:
21" (k+1) = AT"27"9 + BY"0(k) + Bf Ivges(k)  (6)

where:

a4 5] )

0 A
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The overall framework with MPC is given by Fig. 3,
where an MPC optimization is carried out whenever the
outer or inner loop states are outside of predetermined
A-contractive terminal constraint sets, G; and G5 respec-
tively, but a closed-form terminal control law is active
once the inner and outer loop states have reached the
terminal sets. The mathematical description of the outer
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Fig. 3. Hierarchical control strategy when model predictive
control is active.

loop control law is:

(k) = V3es(klk) if z{"(k) € G1 and (k) € Ga,
Vdes\W) = —K,25"9(k) ,  otherwise

Here, K is the terminal control gain and v . (k) is the
optimized control input sequence from the outer loop MPC
optimization, given by:

Vdes(k) = argmin Ji (vaes (k)21 (%), ¥(k)),  (8)
subject to the constraints:

x7"8(k+ N —1]k) € G4,

x3"8(k + Nk) € MG, 9)
[Vaes(k + ilk) — Vaes(k + ik — 1)|| < (5797 8%,
1=0...N =2
and cost function:
k+N—-1

J1(Vaes (k)27 (), ¥ (k)) =

i=k
(10)
Note that the bold versions of variables represent their
corresponding N-step MPC sequences (over the N-step
horizon), i.e.,

Vdes(k) = [Vdes(k“f) .
x{"8 (k) = [x1"¢ (k[k) -

The mathematical description of the inner loop control law

is:
u(k):{ ug(k) , otherwise

where ui(k) = Ko1V4es(k) + Kooxp(k) — Koz (k). Here,
u®(k) is the optimized control input sequence from the
outer loop MPC optimization, given by:

u®(k) = argmin Jy(u(k)|z(k), x¢(k)),

subject to the constraints:

vaes(k + N —1[k) ],

x7"8(k+ N|k)]. (11)

u®(klk) if x7"9(k) € G1 and Z(k) € G

(12)

Y (x5 (ilk), vaes(ilk))-

Table 1. MPC Design Parameters for Stability

Constraints
Parameter Description
Gy outer loop terminal constraint set
G inner loop terminal constraint set
K outer terminal control gain matrix
Ko1,22,23 inner terminal control gain matrices
A1 outer contraction rate (< 1)
A2 inner contraction rate (< 1)
[ rate-like constraint on outer loop MPC
o rate-like constraint on inner loop MPC
I6] any scalar that is < 1

%(k + N|k) € A\sGo,
lak + ilk) - u(k + ilk - 1)] < (57°%) 8",
1=0...N—2
u(k+ilk)€U,i=0...N—1,

where U classifies the actuator saturation limits of u, and
cost function structure:

(13)

k+N-1

Ta(u(k)|E(k), xe (k) = Y

i=k

g2(X(ilk), u(ilk)).  (14)
The subsequent sections will describe how the terminal
constraint sets, Gy and Go, are constructed, as well as how
the rate-like constraints, specified by 57"‘” and 0" are
determined once contractlon coefﬁments )\1, Ay are chosen
For convenience, all of the design parameters of the MPC
optimization that are critical for applying the stability
constraints are summarized in Table 1.

4. DERIVING A-CONTRACTIVE TERMINAL
CONSTRAINT SETS AND CONTROL LAWS

In this section, we will first derive control laws that, in the
absence of constraints, will lead to overall system stability.
Having derived these control laws, we will then show that
there exist A- contractive sets Gy and G2, such that once
21" and Z enter G2, they remain there (and in fact are
driven further into the sets at the next instant).
Proposition 3. (Terminal control laws) There exist control
laws vges(k) = —K127"(k) and u(k) = Kajvges(k) +
Kooz (k) — Kas&(k) which, when substituted into the
system dynamics, yield:

1+ 1) = (AT — BIE){ (k) + B"05(8),(15)
P+ 1) = Ag3(k),
where re(\;(A{" — B{"K})) < 0,Vi. O

The existence of the outer loop controller follows from
the stabilizability of (Aaug B{"), and the existence of
the inner loop controller is easﬂy shown when both the
actuator and reference model dynamics are cast in CCF.

Now, we show that A-contractive sets, conforming to the
definition in [Lin (2004)], G; and G9 exist for the outer
and inner loops, respectively.

Proposition 4. (Existence of A-contractive sets) There ex-

ist sets G; € R™T"2 and G5 € R™, along with scalars
A1 < 1 and Ay < 1 such that if:



27" (k) € Gy,
z(k) € Ga, (16)
Vges(k) = —Ky111(k),
u(k) = Ko1Vges (k) + Koox (k) — KogZ(k),
then:
u(k) e U,
29 (k + 1) € MGy, (17)
Z(k 4+ 1) € A2Ga.
O

The proof follows from the construction of outer and inner
loop Lyapunov functions, Vi (2{"Y) and V5(Z) and bounds
V"5 such that, under the terminal control laws, when
V(z{"(k)) < Vi and V(&(k)) < V5, the disturbance
presented to the inner/outer loop from the other loop is
small enough that:

(1) Vi(@{™(k+1)) < MVY,
(2) Val@(k +1)) < AVy

The proof of Prop. 4 provides the method by which one
can construct G; and (G5, and determine suitable values for
A1 and Ao, by means of designing appropriate Lyapunov

functions Vi (x7"?) and V2(%), respectively.

5. DERIVING RATE-LIKE CONSTRAINTS ON
CONTROL INPUTS AND DESIRED VIRTUAL
CONTROL INPUTS

Having discussed the existence and construction of the
terminal control laws (with gains K4, Ko1 22 23), terminal
constraint sets (Gi,2), and contraction rates (A;2) in
Section 4, we now turn to the construction of the rate-
like constraints, 6, and 4;*", which limit the variation
of vges and u trajectories from one time instant to the
next.

We begin with the following proposition, which follows
from examination of the time series representation of the
x7"Y trajectory:

Proposition 5. (Robustness of outer loop MPC to varia-
tion in ¥) - Suppose that, given

v(k) =[v(klk) ... V(E+ N —1]k) ],
there exists a trajectory
Vdes(k) = [ Vdes(k|k) ... Vaes(k+ N —1]k) ],
that yields x7"8(k + N|k) € A Gy. Then it is possible
to choose €' > 0 such that if |V(k + i|k) — v(k + |k +
D € €gmae,i =1... N—1and vges(k+i|k+1) = vaes(k+
ilk),i=1...N —1, then x;"8(k+ N|k+1) € G;. O

We arrive at a very similar conclusion regarding the
robustness of the inner loop MPC to variation in xg:

Proposition 6. (Robustness of inner loop MPC to varia-
tion in x¢) - Suppose that, given

xe(k) = [xe(klk) ... xe(k + N|k)],
there exists a trajectory

u(k) = [u(klk) ... u(k+ N —1lk)],
that yields X(k + N|k) € A2Gs. Then it is possible to
choose €%*" > 0 such that if ||x¢(k + N[k) —x¢(k + N|k +

D < e and u(k+ilk+1) =u(k+ilk),i=1...
then X(k+ Nlk+1) € Go. O

N1,

The proof of Prop. 6 is straightforward, given that x
represents an output disturbance to Z, and therefore any
restriction on the variation in x; will map directly to a
restriction on the variation in z.

It is possible to convert the state constraints of Props. 5
and 6 to input constraints (on vges and u), which are easily
enforced and will always result in a feasible optimization
problem. These input constraints are given in the following
propositions:
Proposition 7. (Converting constraints on v to constraints
on u) - Suppose that [|Cfle’*"e**® and that the input
trajectory
uk—-1)=[uk—-1k—-1) ... u(k+N—-2k—-1)],
in conjunction with the external input trajectory
xe(k—1)=[xe(k—1k—-1) ... x¢(k+ N —-1lk —1)],
generates the trajectory
v(k)=[V(klk) ... V(k+ N —1lk)].
Then there exists 6;** > 0 such that if ||u(k+i|k) —u(k+
ilk —1)|| < &ma i =0...N —2, then |[v(k +ilk +1) —
vk +ilk)|]| <er** i=0...N—-1.0
The requirement that [|Cle’*® < €7 arises from the
fact that zy acts as an external disturbance to Z, and if
xy is allowed to vary too much, relative to o, then it is
impossible to guarantee that the variation in v will be
sufficiently small, regardless of how small one takes §;**.
No such imposition exists for the conversion of constraints
on Xr to constraints on vges, however, which is presented
in the following proposition:

Proposition 8. (Converting constraints on Xy to con-
straints on vges) - Suppose that the trajectory
Vdes(k) = [ Vaes(k|k) ... Vaes(k + N —1]k) ],

in conjunction with the external input trajectory

v(k)=[V(klk) ... v(k+ N —1|k)],
generates the trajectory

x¢(k) = [xe(k|k) ... xe(E+ N|E)].
Then there exists d;%" > 0 such that if ||[vaes(k + ik +
1) — vaes(k +ilk)|| < 07** i =0...N — 1, then ||x¢(k +

Vdes

ilk+1) = xe(k +ilk)|| < e, i=0...N. O

6. SUCCESSIVE FEASIBILITY, CONVERGENCE,
AND STABILITY

In this section, we bring together the constraints derived
in sections 4 and 5. We show how these constraints result
in successive feasibility of the MPC optimization problem
and asymptotic stability of the overall system, with a
region of attraction that is identical to the set of states
for which the initial optimization problem is feasible.

6.1 Successive Feasibility

Because the rate-like constraints cannot be applied at
step k = 0 (since there is no step k = —1 against
which to compare), we make the following initial feasibility
assumption for step k = 0:



Initial Feasibility Assumption - There exists a set X €
R™+2m2 such that if [299(0)7 #(0)”]" € X, then
Vdes(0) and u(0) can be chosen and are chosen such that
[v(i]1) — ¥(i]0)| < €5 and the MPC optimization problem
is feasible.

Given this assumption, we are now ready to state the
successive feasibility result.

Proposition 9. (Successive feasibility) Suppose that the
initial conditions satisfy [z{"9(0)" ir(O)T]T € X. Then
both the outer and inner loop MPC optimizations are
feasible at every step, k> 0. O

The proof follows from the rate-like constraints imposed
on vges(k) and u(k). Specifically, if the variation in vges
and u is sufficiently small from step k to k 4+ 1, then the
optimization problem remains feasible at step & + 1.

6.2 Convergence

Having shown that the optimization problem is succes-
sively feasible, the next step is to show that the control
law does in fact result in convergence to G 2. This is given
in the following proposition:

Proposition 10. (Convergence to Gi2) Suppose that the
initial conditions satisfy [z{"?(0)" #(0)" ] € X. Then
there exists a scalar integer N* > 0 such that, after apply-
ing the MPC algorithm for N* steps, we have z{"9(N*) €
G4 and .i‘(N*) € Gy. O

The proof relies on the fact that the variation in vqes and
u is not only limited, but is also required to decay over
time (through the use of 8 < 1 in (9) and (13)).

6.3 Overall Stability

We are now poised to state our main result, namely
asymptotic stability of the origin of the overall system,
with region of attraction X:

Proposition 11. (Asymptotic stability) Under the MPC
controller, the origin, z{"Y = 0, £ = 0, is asymptotically

stable with region of attraction X. O

The proof contains two parts. First, local asymptotic
stability with region of attraction {(z{"?,%) : 27" €
G1,& € Gs} is shown by demonstrating that both the
inner and outer loop systems are input-to-state stable
(ISS) and the small gain condition is satisfied within this
(invariant) region of attraction. The small gain condition
is particularly easy to verify, since the asymptotic tracking
of the inner loop reference model results in an inner loop
Iy gain of 0 from vges and zy to ¥; thus, any finite outer
loop input-output gain satisfies the small gain condition.
Through the use of MPC, the region of attraction is
enlarged to X.

7. APPLICATION EXAMPLE - STIRRED-TANK
REACTOR

We now turn to a stirred-tank reactor system first de-
scribed in [Mhaskar (2006)] and used by [Picasso (2010)] to
illustrate the effectiveness of multi-rate hierarchical MPC.
The system is designed to control the reactor temperature

Table 2. Actuator Dynamic Characteristics

Characteristic ¢ w1 wa w3
Nominal 0.2 | 150 | 300 | 500
Slower 0.1 | 150 | 300 | 500
Slowest 0.04 | 150 | 300 | 500

(T') as well as the concentrations of two species (C'4 and
Cp). This is done using auxiliary heating from a fluid
with a rate of heat input (or removal) Quuz, an inlet
steam (which also provides heating) with temperature T4,
and reactant concentration C4q. Finally, Qquz, Tao, and
C 4o are manipulated through actuators uj, uz, and us.
Sampling the system at a 0.01 minute time step, we arrive
at the following outer loop system dynamics:

1.134 1.279 0
z1(k+1)= | —0.0008454 0.9453 0 ]mlk
0.0008454 0.005907 0.9512
0.01066 0.03157
+1 0 0.04861 |w(k)
0 0.0001458
where:
a1 =[6T 6C4 6Cp ", (18)

0 =1[0.00436Qaus + 4.9980T a0 6Ca0]" .

where § denotes deviation from nominal values (which
result in the system being controlled to a desired steady-
state setpoint). This particular linear model has been
generated around the setpoint 7' = 359 K, Cy = 3.59
kz}"l, and Cp = 0.41 kkLgOl. Because Ty, and T4o enter
the system at the same point, their effects can be combined
into a single virtual control input.

We will consider second order dynamics expressed in
continuous time as:

- 74807 100w3
Vl(s) - 32 I Cw18 +w% Ul(s) + 32 I CC()QS +w§ UZ(S)
4w?
VQ(S) = 3 Ug(s), (19)

$2 4 Cwss + w3
for a variety of actuator parameters, summarized in Table
2. In order to reduce conservatism in the calculation of
invariant sets and rate-like constraints, raw actuator com-
mands have been scaled by their saturation limits, such
that actuator saturation constraints around the nominal
setting are given by:

~1<uips < 1. (20)
Because the discrete-time actuator dynamics have relative
degree 1, and all of their zeros are stable, we consider
reference models of the minimal form:

1—a

Fi2(2) P
where the reference model is made full order through stable
pole-zero cancelations. The outer loop controller is de-
signed through simple pole placement, and the inner loop
controller is designed through solving the reference model
matching equations. Having designed both controllers, the
boundaries of the constraint sets, G; and G5 are selected
as level sets of outer and inner loop quadratic Lyapunov
functions:

(21)



Table 3. Reference Model and MPC Design
Parameters for the Application Example

Actuator a A1 A2 i e
Nominal | 0.368 | 0.941 | 0.837 | 0.955 | 0.21
Slower | 0.607 | 0.941 | 0.857 | 0.955 | 0.182
Slowest | 0.819 | 0.941 | 0.915 | 0.955 | 0.135
Vi(a1") = (27")" Qui™, (22)
Va(7) = 2" Pi,

where @ and P are solutions of the discrete-time Lyapunov
equations for the closed outer and inner loops, respectively.

Table 3 provide the values for A; o, 6;'%", and §,'** for
each actuator characterization and corresponding choice
of reference model and controller, taking the MPC horizon
length to be N = 20. Here, \5 £ 1 — ap, where ay is
defined as in Prop. 4. With slower actuator dynamics,
the contraction rates within the inner loops are closer
to 1 (slower) and, consequently, less variation in vges is
allowable from one optimization to the next.

For our simulation results, we consider the use of quadratic
cost functions for both the inner and outer loop MPC,
defined as follows:

91 (27 vges) = (27T Q0™ + vl R1vdes,

g2(%,u) = 31 Qo7 + u” Ryu, (23)
subject to the stability constraints outlined in (9) and
(13). We consider the problem of stabilizing the overall
system to a setpoint of T' = 359 K, C4 = 3.59 k%gol, and

Cp =041 kzlg"l. The resulting time trajectories are shown
in Fig. 4, which demonstrates that our MPC formulation
results in a stable closed loop system in the case of each

actuator characteristic.

T T
— Nominal Actuators
— — — Slower Actuators  []
— — Slowest Actuators

- L L L L L L
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. . . . . .
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Time (min)

4. Simulation results for the stirred-tank reactor

example.

Fig.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel alternative approach to
hierarchical MPC that relies on an inner loop reference
model rather than a multi-rate approach for achieving

overall system stability. This new approach broadens the
class of systems for which overall stability of a hierarchical
MPC framework can be guaranteed. Future work will
examine inexact reference model matching, retroactivity
of plant states, and non-constant setpoints.
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